首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25946篇
  免费   2590篇
  国内免费   1636篇
电工技术   654篇
综合类   1983篇
化学工业   5554篇
金属工艺   3928篇
机械仪表   1186篇
建筑科学   1289篇
矿业工程   1021篇
能源动力   613篇
轻工业   3090篇
水利工程   530篇
石油天然气   808篇
武器工业   301篇
无线电   1293篇
一般工业技术   3886篇
冶金工业   2303篇
原子能技术   272篇
自动化技术   1461篇
  2024年   60篇
  2023年   492篇
  2022年   731篇
  2021年   903篇
  2020年   975篇
  2019年   894篇
  2018年   776篇
  2017年   1017篇
  2016年   979篇
  2015年   955篇
  2014年   1339篇
  2013年   1775篇
  2012年   1627篇
  2011年   1837篇
  2010年   1253篇
  2009年   1443篇
  2008年   1226篇
  2007年   1556篇
  2006年   1560篇
  2005年   1272篇
  2004年   1145篇
  2003年   1004篇
  2002年   865篇
  2001年   665篇
  2000年   594篇
  1999年   548篇
  1998年   397篇
  1997年   375篇
  1996年   261篇
  1995年   236篇
  1994年   221篇
  1993年   194篇
  1992年   161篇
  1991年   135篇
  1990年   183篇
  1989年   139篇
  1988年   94篇
  1987年   47篇
  1986年   38篇
  1985年   37篇
  1984年   24篇
  1983年   16篇
  1982年   15篇
  1981年   18篇
  1980年   11篇
  1979年   6篇
  1978年   6篇
  1964年   7篇
  1959年   8篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
C. A. M. da Silva 《Drying Technology》2015,33(15-16):1929-1948
Moisture content and particle size are critical parameters in fluidized-bed granulation and coating. In this study, microcrystalline cellulose was granulated and coated. The particle size was monitored in real time by a Parsum IPP70 probe. The fluidization regime was assessed by Gaussian spectral analysis. The bed temperature and gas humidity profile were monitored to evaluate the drying efficiency. The defluidization phase was detected in the early stages with frequencies below 6.0 Hz. The Parsum probe showed the growth of the particles due to agglomeration. The psychometric parameters indicated the lower potential energy for drying. Therefore, monitoring in real time is important to detect failures.  相似文献   
102.
Direct-contact vaporization heat transfer is investigated by analyzing the heat transfer coefficient with the area of liquid-liquid direct-contact interface. The interface areas of liquid-liquid heat transfer are determined by stroboscopic images. At higher temperature, the heat transfer area per unit volume decreases. The water temperature has no significant influence on the heat transfer coefficient. The effects on droplet size distributions of operating variables including inlet water temperature, n-pentane flow rate, and test position with packing and without packing are compared.  相似文献   
103.
Unlike fracture toughness, the notch fracture toughness of a ceramic is not a constant; rather, it increases with the notch-root radius ρ in a notched specimen. In this study, by analyzing the fracture measurements of eight different notched ceramics with an average grain size G of 3–40 μm, a simple model describing the relation between the notch fracture toughness and fracture toughness is proposed as a function of the relative notch-root radius ρ/G. The normal distribution is incorporated to consider the inevitable scatter in measurements where fracture mechanisms and errors are present. The results demonstrate that the model can effectively predict the quasi-brittle fracture variation trend for ceramics, including the upper and lower bounds, with 96% reliability, from a normal distribution; thus, it can address virtually all of the experimental data. We also determined that the notch fracture toughness approximates the fracture toughness if ρG.  相似文献   
104.
景亭 《无机盐工业》2020,52(4):57-60
采用碳化法合成纳米碳酸钙,在反应过程中,调整反应起始温度合成不同晶型大小的纳米碳酸钙。通过透射电镜(TEM)、激光粒度仪对碳酸钙的物相、形貌、粒度进行分析,将改性纳米碳酸钙应用于硅酮胶基料制备及挤出性研究,分析改性纳米碳酸钙的颗粒大小、分散性、流变性能及表面改性剂对挤出性的影响。结果表明:粒径介于50~90 nm,屈服值介于66.4~148.9 Pa,黏度介于0.5~0.75 mPa·s,硬脂酸钠与LH-2、LH-3两种包覆剂进行复配改性的纳米碳酸钙用于硅酮胶基料具有较好的挤出性能。  相似文献   
105.
The effect of Zn and Y on hot-tearing susceptibility (HTS) of Mg–xZn–2xY (x?=?1, 1.67, 2.67) alloys is investigated. It is found that the microstructure of the alloys is mainly composed of α-Mg, long-period stacking-ordered (LPSO) phase and W-phase. Both theoretical and experimental results illustrated that HTS of the investigated alloys is in the following order: Mg–1Zn–2Y > Mg–1.67Zn–3.34Y > Mg–2.67Zn–5.34Y. For Mg–2.67Zn–5.34Y alloy, LPSO phase content reaches at the maximum and its grain size reaches at minimum of 16.4 µm, and the pinning effect of the LPSO phase on grain boundaries is considered to be an important reason for reducing HTS of the alloy.  相似文献   
106.
《Ceramics International》2020,46(8):11689-11697
In this research, vapor phase transport (VPT) was introduced as a facile, inexpensive method to produce ZnO micro/nanostructures from various Zn sources such as pure Zn and alpha brass pre-alloyed powders (Cu–20Zn and Cu–28Zn) at different processing temperatures of 930 °C–1050 °C. Simultaneous thermal analysis (STA) was carried out to investigate Zn evaporation and ZnO micro/nanostructure formation. STA results showed an exothermic peck at 711 °C and 728 °C for Cu–20Zn and Cu–28Zn, respectively, due to oxidation of the evaporated Zn element and formation of ZnO micro/nanostructures. X-ray diffraction results showed that high purity ZnO micro/nanostructures were successfully synthesized via VPT process and the crystallite size was increased from ~60 nm to ~100 nm with increasing processing temperature. Field emission scanning electron microscopy observations showed morphology (e.g. rods, column, tetrapods, and combs) and size of the synthesized micro/nanostructures were dependent on the Zn sources and processing temperature, in which average diameter of the synthesized ZnO structures was increased with increasing the processing temperature. The smallest (98 nm) and largest (603 nm) average diameters of synthesized ZnO micro/nanostructures were attained from the pure Zn and Cu–28Zn brass powders at 930 °C and 1050 °C, respectively.  相似文献   
107.
《Ceramics International》2020,46(2):1631-1639
Studying the fragmentation law and refinement of cubic boron nitride powder under ultra-high pressure is crucial to producing a high-strength, high-density polycrystalline cubic boron nitride. In this paper, brown and black cBN crystalline powders with different micron sizes were selected as initial raw materials for an ultra-high-pressure simulation experiment. Single and mixed particles were extruded under 80MPa low pressure and 5.5GPa ultra-high pressure at ambient temperature for 1 min. The crushing behavior and particle size distribution of cBN powders with different particle sizes and ratios were investigated using a laser particle size analyzer and scanning electron microscopy. Results revealed no particle breakage or deformation at low pressure, and the compaction density was low. However, under ultra-high pressure, the cBN particles showed cracks, plastic deformation, and fragmentation, resulting in crushed fine particles filling in the voids of coarse particles, which led to a higher pressing density. Small-sized or mixed cBN particles with high density ratios were not easily crushed; the coarser the particle size, the more severe the ultra-high-pressure extrusion and crushing. The pressing density also declined, and brown cBN crystal particles with higher impact toughness demonstrated a lower particle breakage rate. The ultra-high-pressure crushing law should be considered and appropriate binders should be selected to improve the sintering performance of PcBN materials; ultra-high-pressure crushing of cBN powder contributes to cBN-cBN and cBN-M-cBN bonds under high temperatures and ultra-high pressure.  相似文献   
108.
Transparent ceramics with good electrical performance have recently drawn broad interest as promising multifunctional materials. Here, we report that a superior transmittance (T = 75 % at 2000 nm) and good piezoelectricity (d33 ∼ 150 pC/N) can be simultaneously realized in 0.93K0.5Na0.5NbO3-0.07SrZrO3 (KNN-SZ) ceramics by Li2O regulation. The effect of Li2O regulation has two parts: first, the presence of Li2O facilitates the grain growth of KNN-SZ, considering that it melts at a relatively low temperature as a proper sintering aid; second, the introduced Li+ causes local lattice distortion, resulting in the coexistence of orthogonal and tetragonal (O–T) phases. The enlarged grains reduce the light scattering by grain boundaries for a higher optical transmittance; meanwhile, large grains stand as a prerequisite for the macroscopic domain structure favoured for decent piezoelectricity, which could also be partly caused by the coexistence of O–T phases. We believe that these findings might make KNN-based ceramics a preferable candidate for optoelectronic devices.  相似文献   
109.
The cowpea weevil, Callosobruchus maculatus (F.) (Col.: Bruchidae) is a cosmopolitan field-to-store pest ranked as the major post-harvest pest of cowpea in tropical regions. The cold tolerance of an insect species can vary as a result of abiotic features including food resources. In this study, C. maculatus larvae were fed with proline and trehalose (10, 20, and 40 mmol) treated cowpea seeds to determine the effects of these potential cryoprotectants on the supercooling (SCP) and cold hardiness of the upcoming adult beetles. The SCPs of the control, proline-fed and trehalose-fed adults non-significantly changed from −18.2 °C for the control to −17.2 °C for trehalose-fed adults. The cold hardiness (24 h at 0, -5.0, −7.5, −10.0, and −12.5 °C) of the adults was almost the same for control and treatments. Median lethal times (LT50; lethal time for 50% mortality) were 6.3, 6.0, and 5.4 h, respectively. Moreover, feeding the larvae with proline and trehalose-treated seeds did not affect the proline and trehalose contents of the adult beetles. Our results showed that C. maculatus could not tolerate subzero temperatures well above their SCP, indicating that this species might be a chill-susceptible insect.  相似文献   
110.
In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior, cyclic loading–unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes. The results show that, the decline ratio of elastic modulus is weakened with increasing grain size, and the Bauschinger effect becomes evident with decreasing grain size. Meanwhile, U-bending test results determine that the springback is diminished with increasing grain size. The Chaboche, Anisotropic Nonlinear Kinematic (ANK) and Yoshida-Uemori (Y-U) models were utilized to fit the shear stress–strain curves of specimens. It is found that Y-U model is sufficient of predicting the springback. However, the prediction accuracy is degraded with increasing grain size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号